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Pulse delay and propagation through subwavelength metallic slits
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The transmission properties of a 2D metallic grating are investigated at optical wavelengths for an incident
Gaussian pulse having pulse widths from 100 fs to 10 ps. The slits in the grating are subwavelength which can
nevertheless allow significant transmission in the narrow wavelength regions where the so-called surface
plasmon polaritonfSPP and waveguide mode resonances occur. The solution is obtained for each spectral
component of the pulse by using the rigorous coupled wave approach and then the temporally varying output
pulse is reconstructed by the standard method of taking an inverse Fourier transform. The delay of the pulse
and the output pulse widths are determined by taking the first and second order moments of the Poynting vector
with respect to time. It is shown that the time delay may be significant, as much as 256 fs for a pulse width of
200 fs for the SPP resonance but quite sr@! fs) for the waveguide mode resonance. The focus of the work
is on demonstrating how the pulse delay evolves as the pulse propagates in the half-space beyond the grating.
It is shown that the distance over which the time delay develops is much larger than the actual longitudinal
dimension of the grating structure and it is approximately the same distance over which the stored energy and
the vortices of the Poynting vector extend.
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[. INTRODUCTION tion for a variety of optical structuresee e.g[5-9)).
The motivation for investigating this type of grating struc-

It has long been known that in a linear two-port network ature came from the recent experimental results of Ebbesen
single frequency input wave will give rise to an output waveet al. [10] who showed that considerable resonant transmis-
at the same frequency and, in general, the output wave wiion may be obtained through a periodic array of subwave-
differ from the input wave in amplitude and phase. If thelength holes due to the good offices of surface plasmon po-
input wave is pulsed then the same considerations lead to tHaritons (SPB. The assumption that surface plasmons are
conclusion that the output pulse will have a somewhat diffesponsible for the high transmission was subsequently
ferent frequency spectrum and will appear with some delaytested, and proved by several grolip$—14. An earlier at-

If we know the properties of the two-port network, say, thet€mpt to explain the high transmission by introducing a two-
scattering coefficients and their frequency dependence, wdimensional slit geometry was made by Poetaal. [15]. In

can work out the time delay. So far this is all network theoryaddition to what was described as an SPP driven resonance
(see e.g[1-3)). If we wish to go further and determine the they were able to show that for an incidgnpolarized wave
scattering coefficients in a particular case then, often, we arbigh transmission may also occur in another wavelength re-
forced to turn to electromagnetic theory. This is particularlydion (slit size being still much smaller than the wavelength
so at optical frequencies, the subject of the present work. Ouhen the physical mechanism is resonant coupling at a grat-
aim is to determine, using the full apparatus of Maxwell’s ing thickness close to half a wavelength. Various aspects of
equations, the variation of the electric and magnetic fields fofh€ high transmission resonances found with these structures
an input pulse incident upon the two-dimensional metallichave been investigatedee e.g[16-22). In terms of field
grating shown in Fig. 1 with a view to find the pulse delay duantities, the differences between the two resonances were
from field considerationf1—9]. Since the electric and mag- €xamined in Ref[21] by relying on the time-average Poyn-
netic fields will be available at every point we shall be ableting vector. In the present paper we intend to use similar
to show how the actual time delay builds up as the pulséechniques in the pulsed regime.

crosses the slit and propagates into the half-space beyond.

We shall then attempt to give an answer to the next relevant A

guestion that how large is the domain where the delay occurs Vo ax dak 1d
and how it is correlated to some of the other variables cal- Gfﬁ N || ||
culated like the time average Poynting vector and the stored z T

energy. Work along similar lines has been performed in the
recent past where various field quantities have been studied FiG. 1. A schematic representation of the metallic grating used
in relation to energy flow, group velocity and pulse propagain the present work; the structure is considered infinite in yhe
direction. Dispersive, complex permittivity values were used corre-
sponding to gold taken from R€f23]. The slit width is fixed a&
*Email address: p.stavrinou@imperial.ac.uk =0.5 um and the grating period was=3.5 um.
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Time delay under resonant conditions in diffractive struc-dent upon the gratinf26,27. In the present work, the tem-
tures has been considered by Schreieal.[24] for a dielec- poral period between the pulses is selected to be between
tric structure by analyzing the output wave far away from the20—-300< the pulse width7. The resulting spectral band-
grating. They concluded that under resonance conditions width of a pulse is truncated to retain envelope magnitudes
wave packet stimulates modes that are supported by thehich are=10 1% and typically involves several hundred
structure. Energy is coupled into these modes and couplecomponents.
out with a temporal delay. Work examining the pulse delay In our earlier work we obtained field distributions every-
through a metallic grating has recently been experimentallyvhere in space for a single incident plane w2g|. Thus to
investigated by Dogariet al.[25]. They measured time de- solve the problem for pulsed incidence we only need to su-
lays of about 7 fs when a pulse propagated through a twoperimpose the solutions obtained for each spectral compo-
dimensional array of subwavelength holes at an SPP resment. The temporal variation of the fields may then be ob-
nance, and deduced the theoretical value from the simplined by taking an inverse Fourier transform of the full
model of a damped Lorentz oscillator. For the present worksolution at each point in space. If all one wants is to deter-
pulse propagation and delay are examined at the high transine the time delay between the input pulse and the output
mission resonances of a metallic grating comprising subpulse then it is sufficient to investigate the time variation of
wavelength slits. In Sec. Il we discuss how grating diffrac-the zero order component of the field, i.e., to disregard all the
tion for an incident pulse can be found from the solution forevanescent waves generated. Our aim is however to see how
the stationary case and show how the pulse delay and thbe time delay builds up in the immediate vicinity of the
change in the pulse width can be obtained from first andyrating and, in particular, to see how large is the spatial do-
second moments of the Poynting vector. In Sec. lll we shownain which has an influence on delay. The answers to these
results for the SPP resonance, in particular how the delaguestions lie in the properties of the evanescent waves.
builds up and how it depends on the pulse width. Sec. IV
shows the relatively straightforward case of the waveguide
mode resonancéWGM). A short discussion analyzes the B. Calculation details

main results in Sec. V and finally conclusions are drawn in  The parameters of the gratiriGig. 1) are chosen to be the
Sec. VL. same as those previously examingib,21]. The metal is
taken to be gold with a dispersive complex permittivity fitted
[l. CALCULATION SCHEME to the data provided in Ref23]. The grating period is\
=3.5um and the width of the slit is kept fixed a
=0.5 um. In the original work by Portet al.[15] the spec-

In a previous publicatiohi21] we investigated the steady tral response for different slit widths and grating thicknesses
state properties of the grating shown in Fig. 1, concentratingvere examined and the resulting high transmission reso-
on high transmission zero-order resonances arising for agances were broadly classed as arising from either SPP-like
incident p-polarized plane wave. We shall now solve the or WGM [15]. Based on this work, and following on from
same problem for the same grating parameters for an inpuyr previous investigation, two grating thicknesses are cho-
pulse taken in the form of a carrier modulated by a Gaussiagen to specifically examine the SPIP<(0.6 xm) and WGM
envelope. The normally incident electric field is taken in theresgnance d=3 um). The resonant wavelengths ake
form =3.586 and 7.438.m for the SPP-like and waveguide mode

2 (WGM) resonances, respectively. Calculation of the electric
Exzexp< —21n 2_2> expi(wt—k2), 1) and magnetic fields follows closely that of R¢R1]. The
T

A. Background theory

mathematical technique used is based on rigorous coupled

wave-analysis(RCWA) [28] and incorporates recent im-
wheret is time, z is the coordinate in the direction of propa- provements to the algorithi29,30. We use here the same
gation(see Fig. 1, w is the carrier frequency; is a measure technique for each of the spectral components and from that,
of the pulse duratiofthe FWHM intensity andk is the wave  as outlined in the previous section, we can find all the field
number. Equatioril) provides the time variation for a single quantities as functions of, z, andt.
pulse which reaches the gratingtat0. In practice we can- The fields in the vicinity of the grating are given by the
not avoid turning this problem into that of a periodic set of zero-order propagating wave and a very large number of eva-
pulses incident at a repetition frequencydb wheredw is  nescent wavegtypically 100 for each of the spectral com-
the frequency interval at which the samples of the wavefornponents. The number of spectral components retained varied
are taken. Provided that the resulting temporal period befrom 100-1000 depending on the temporal width of the
tween the pulsesl =2/ dw, is much larger than the pulse- pulse, increasing as the pulse width decreased. From this
width, and the lifetime of any excited modes in the grating,point of view the resulting field picture is difficult to inter-
the solution obtained is essentially that of a single pulse. Theret. We argued in Ref[21] that a more useful physical
mathematical technique is to take the discrete Fourier trangicture can be obtained if instead of the electric and magnetic
form of the incident pulse and then each spectral componeriields (elliptically polarized in the general case hence cannot
(spacedw apar} can be regarded as an incident plane wavebe presented as single vectors at a point in spaeerely on
Hence the problem reduces to that of a set of plane waves dfie time-averaged Poynting vector. In the present case we
slightly different frequencies and complex amplitudes inci-still talk about time-averaged Poynting vector but now the
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0.7 TABLE I. Incident pulse widths at the SPP resonant frequency
and the corresponding total diffracted transmission efficiencies
0.6 along with delay and rms values measured at a distance
=10 pm.
0.5
Pulse width Transmission Values &£ 10 um
§ 04 7 (ps) oo (P9 (%) delay(ps o, (p9
@
5 0.1 0.043 15 0.212 0.225
g 03 0.2 0.085 23 0.256 0.244
02 0.4 0.170 35 0.303 0.293
0.6 0.254 42 0.333 0.354
. 0.8 0.340 47 0.352 0.423
1 0.425 50 0.365 0.493
0.0 AL 2 0.849 56 0.402 0.874
3.4 35 3.6 37 3.8 3.9 5 2.123 59 0.415 2.144
wavelength (um) 10 4.246 59 0.418 4.257

FIG. 2. The spectral representation of some Gaussian pulses,
with carrier wavelength equal to the SPP resonant wavelength, s
perimposed with the SPP transmission spe@aited ling.

602 0.413

%0btained from the spectral response\gbp=3.586 um.
. . . b :
time average means averaging over a period of the carriefalculated from the spectral phase response usifg/dw.

frequency, i.e., we still use the complex representation,se. |f the pulse is long enough the transmission will be the
S(x,z,t) = 1/12REE(x,2,t) XH*(x,z,1)]. The time variation same as for the continuous case. As the pulse shortens the
due to the Gaussian envelope of the pulse remains. The spgansmission declines for the spectral components away from
tial variation of the Poynting vector will appear in having the resonance. This is shown in Table I. For pulse wigtt2s

both x and z components. The electromagnetic power Mayps the transmission is close to the steady siafaite) value
move both sideways and forward. However when our mairyt 004 but the transmitted power declines to 15% for a 100
interest is in the time delay we do not need to go into theg pulse.

details of lateral movement and present the passage of the 14 begin the temporal study, we first look at a fixed
pulse solely in terms of the transverse average ozteem-  osition beyond the grating and record the time dependent

ponent of the Poynting vector, power flow, averaged over a grating peridel. (2)]. A dis-
1 (A tance of 10um is chosen, which from our earlier wofR1]
S,(z,t)=— S,(x,z,t)dx. 2) is far enough away so both the energy density and stream-
AJ-ar lines at the SPP resonance describe basic plane wave propa-

. . . gation. The results for a selection of incident pulse widths
The expected arrival time and rms width of the pulse at &¢ gshown in Fig. 3. The overall shape of the transmitted
given value ofz can then be obtained from the first and ses is reasonably maintained with some noticeable asym-

second momentsf) and(t?) as follows[8,31]: metry found for the shorter pulses. It is also noticeable from
i the times when the peak power is reached that some delay
<t(z)>=j th‘z(z,t)dt, (3) has occurred, given that free-space propagation overrh0
-7 would amount to some 33 fs. In the case of the 100 fs pulse

we have included a scaled trace of an incident pulse which
has traveled the same distance in free space. Compared with
the trace which has propagated through the grating, a delay
can be clearly seeffln the figure the time=0 is defined as
where a normalized,(z,t) is assumed. Both the above mea- when the peak of the incident pulse reaches the start of the
sures may then be used to characterize a rms width of thgrating atz=0 xm.)

pulse given by, = \(t?)—(t)2. The incident pulse width as To get a better indication of the transit time in the pres-

(t%(2))= fjftzfsz(z,ndt, 4

a rms measure is given hy,=\/7/81In 2. ence of the grating, the expected time for each trace is found
using Eqg.(3) and a delay is defined with respect to a pulse
lIl. AT THE SPP RESONANCE traveling the same distance through vacutiyg,—(t). The

magnitudeof delay for each pulse width considered in dis-
For plane waves incident at a single frequency the transplayed Fig. 4 and Table I. The delay depends on duration
mission as a function of wavelength is shown in Fig. 2 bysince, for much the same reason as the duration-dependent
dotted lines. The spectrum of a Gaussian pulse, with carrieransmitted power, in a shorter pulse only part of its spectrum
wavelength equal to the resonant wavelength, is shown in thig affected by the resonance. It follows that the delay is seen
same figure for pulse widths of 100, 200 and 400 fs. Theo increase as the incident pulse duration increases. It is note-
pulse transmission will of course depend on the width of thaworthy that for the shorter pulses the delay can be compa-
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i and taken together form a map 8§(z,t). Figure 5a) illus-

| trates how a delay would be represented by tracking the loci
K of the peak position of the pulder generally(t)). Numeri-
“ cal results, displayingS,(z,t) and (t) for a 400 fs pulse
centered at the SPP resonance, spanning the output region
from the grating are shown in Fig.(ly. Tracking the dis-
placement between the lo¢t) and the vacuum peak, the

f 100fs
\
N
/\ 200t
/\ build up of the delay is seen to continue outside the actual
4001s

/

grating structure, up ta~2A away. If throughout this re-
gion the gradient of thét) loci is considered then the instan-
taneous velocity of the pulse is initially aroune ¢/20) im-

; 108 mediately after the grating before rising tsc for z
/\ =10 um. At the larger distances, i.&=2A, the delay var-

; ies very little, as shown in Fig.().
A5 4 085 005 1152 The map in Fig. ) also highlights how the width of the

time (ps) pulse varies as it leaves the grating. Close to the grating,

where the delay builds up, the local peak intensity is high
and the temporal widtli.e., for a fixedz position appears
=0 the peak of the incident pulse reaches the grating at contracted compared to similar measurements taken further

=0 um. Also shown in the upper pladashed lingis a 100 fs ~ AWaY- Some temporal variation of the pulse may be expected

incident pulse(scaled byx 0.1) which has traveled the same dis- 9iven the inevitable spectral filtering, more so for the shorter

tance in free space. pulses. The rms width of the transmitted pulse at each
position is found and displayed along with the delay in Fig.

5(c). The spatial evolution of the width shows all activity

rable to the pulse width, e.g., a 200 fs incident pulse is deb curs withinz<2A from the grating, the same spatial ex-

layed by some 250 fs. For longer pulses the delay is expected . ouer which the delay is established. Bor2A both

to approach a limiting value dependent eni¢/dw [24], easures show little change. '

where ¢ is the zero order transmitted phase response, whicﬂ1 The representation of delay and rms width in this manner
is straightforward to obtain numerically. The resulting delay[Fig_ 5c)] has highlighted the significance of the environ-
is found to be 413 fs which is in good agreement with the_ . | 0<o 10 the grating.e., z<2A). Indeed when other
limiting value suggested in Fig. 4. An approximate value for ;oo rations are considéred and displayed in a similar

the delay can also k.)e found from the model of a simpl anner, some common aspects begin to reveal themselves.
damped Lorentz oscillatdi25] and deduced from the reso- In Fig. 6 we display the delay magnitude as a function of

nance curve. That calculation yields a value of about 400 fsdistance whereas in Fig(®, results are concerned with
We can of course repeat the above analysis and vary tl}?ropagat’ion immediately ,after the gratindi.e., z
n;easurerr?er_]t [?OS_It;Oﬂ a;)longh ttxe_ax? Wh't%h ‘(’j\"l: give ? =0.6 um). The delay buildup for each pulse is clearly seen
lc:earer Ezys'c.?. p'CtlrJ]ret ys ovlvltngc[Eow 2‘]5. elay e(\j/oc;/esto continue well after the physical extent of the grating and
or eachz position, the temporal tradéq. (2)] is recorde up toz=2A in the propagating direction before settling to

fixed values above>2A. The key observation is that for all
045 pulse widths considereghot only those shown in Fig.)Ghe
distance over which the delay develops appears to be the
same, i.e., the spatial extent of delay evolutiorindepen-
dentof pulse duration. We also plot in Fig. 6 the variation of
the stored energy, averaged over the grating period, as a
function of distance for the stationary case, i.e., when a plane
wave is incident at the resonant frequency. It may be seen
that the region within which the energy is stored also extends
to aboutz=2A.

average Intensity, S, (z)

FIG. 3. Time dependent power flow for a selection of pulses
recorded at a distance=10 um (9.4 um from the grating At t

0.40 +

0.35

0.30 +

delay magnitude (ps)

0.25 IV. AT THE WGM RESONANCE

To complete the study, we briefly turn to the high trans-
0.20 _ , ‘ mission resonance usually referred to as a waveguide mode.
0.1 1 , 10 The appearance of these resonances can be traced to Fabry-
incident pulse width (ps) Paot behavior within the slit§17]. The grating thickness in

FIG. 4. The absolute values of deldy,,.—(t)|, for the inci-  Fig. 1 is taken asd=3 um and the high transmission
dent pulse widths in Table | centered at the SPP resonance arfd>80%) resonance occurs at 7.4a81 and as noted in Ref.
calculated at distance=10 um. (The solid line is used to guide [17] is longer in wavelength thar-2d. In relation to the
the eye) grating period, the zero-order WGM resonance is far from
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0.35 ; ; 0
A 2
03+ ‘ 1 -0.05
h \
' U
025 [ \‘ 1-01
lociof <t> 7 \ a
;w; g :E« 02+ \ +-0.15 %
E g 3 =
£ 2 s \ ;)
0.15 +-02 =
E ‘\
\
01 - \ +-0.25
/ .
~N
0.05 + - —— s 1 0.3
propagating direction (m) 0 L L -0.35
0 4 8 12 16 20 1 10 100
z direction (um}) z direction (um}
(a) (b} (c}

FIG. 5. lllustration of delay and numerical results for a 400 fs pulse centered at the SPP res@@afcEhematic showing how a
transmitted delay would be represented by considering the displacem@itfiafm vacuum propagatiorib) The numerical map of,(z,t)
for a 400 fs pulse spanning the region immediately after the grating, the lighter regions indicate high intensity. Thét)oisi sfiperim-
posed on the map along with the equivalent measure for vacuum propagation. Tracking the displacement between these two measures
illustrates the development of the delay beyond the grdiieg z>0.6 um). (c) For a 400 fs pulse, the rms widtkolid line) and delay
(dash-dotted linecalculated as a function of distance beyond the grating. For both cases all activity is finishe® Ry

the grating cutoff and consequently the strength of evanessteady state but also under pulsed conditions. In the first case
cent field components is greatly reduced, particularly wherireferred to as the SPP resonantte evanescent fields have
compared with the evanescent presence for the SPP-likeigh amplitudes whereas the evanescent amplitudes are low
resonance. for the WGM resonance. We wish to emphasize that this is
Figure 7 shows the delay magnitudes for two incidentthe major difference between the two resonances and all
pulses, 200 fs and 2 ps intensiifWHM), with the carrier  other properties follow from that.
frequency set to the resonant wavelength. In both cases any Considering the SPP resonance, our earlier work had
development of the delagutsidethe grating is minimal, shown that due to the presence of the evanescent waves the
within 1 um from the grating the delay is established. Thestreamlines of the Poynting vector form vortices which ex-
most significant contribution to the delay is due to the propatend over a large distance away from the grafialgout 2\
gation within the slit. A peak value of 32 fs is found from from Fig. 2 in Ref.[21]). When the evanescent amplitudes

using — d¢/dw from the frequency response. are high the stored energy density is high as well and extends
to similar distance beyond the gratiigf. Fig. 4 in Ref.
V. DISCUSSION [21]). In the present work we investigated a range of incident

Our calculations have shown that two resonances invest élg\s;ﬁww't?‘tehs 2;51 ex:?'snhegv\}:?ndgiv elgptr;:ntucl)sfea dpe?;mrcon-
gated exhibit quite different behavior not only under the 9 9 9- 9- P y

4
05 : 2x10 0.5x10*
34 | l
04+ ! loa

— | =

o E £ 32 ' 2ps =
8 2 © ! 2
o 03+ 5 'i:! . loa %
3 g g | 2
B 3 g 0!l ! 2007s 3
@ it > =4
E 021 < ] 02 g
o [o8 hed 1]
8 ol 3
2z t F

|
01 - \ 1 o
26 | \ >
0 L 0
3 10 100
z direction (um) z direction (um)

FIG. 6. Pulse delay for the SPP resonance as a function of dis- FIG. 7. Pulse delay for the WGM resonance as a function of
tance beyond the grating along with the variation in stored energylistance beyond the grating along with the variation in stored en-
density at the SPP resonan¢8olid lineg Absolute values of delay ergy density at the WGM resonand&olid lineg Absolute values
for several pulse width§Dash-dotted lingeThe steady state stored of delay for several pulse widthg§Dash-dotted ling The steady
energy density evaluated at the SPP resonance and averaged ovestate stored energy density averaged over a grating péaiodg
grating period(alongx). X).
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tinued to build up over the same regi@re., overz<2A). wherew(z) is the averagdover x) stored energy per unit
Before we continue, it is perhaps worth making somevolume. Hence the time delay is related to the derivative of
comments about the measures we use for the calculationthe total stored energy density and, indeed, this is borne out
The results presented in Table | and Figs. 3 and 4 are ally Fig. 6. Wheraw is high the rate of change of delay is high
concerned with the far field regime. The key measures useds Well. Whenw declines to zero the delay no longer
throughout were defined in Eq&2) and (3) and involve a  changes. A similar line of reasoning may be used for the
spatially average Poynting vector and its temporal expected/GM resonance. As already noted, the evanescent field am-
value. The use of expectation values is well established iRlitudes in this case are low and consequently the stored
the context of time dela}8,9]. Our use of the expected value EN€rgy outside the grating structure is low. Any further de-
of a spatially averaged quantity in the far field is really moreV€loPment of the delay, above that which occurs within the
for convenience than necessity. Simply tracking the tempor tructure, is expected to be minimal and this is indeed what

power flow at a single point would provide the same results. '967 sqgtgests. far h d the steadv state stored
Spatial averaging becomes more useful when we turn to the ur picture sofar nas used the steady staté stored energy,

near field where the field distributions and power flow isevaluated at the SPP resonant frequency, which appears 1o

: : ; ield good correlation with the spatial variation of delay.
nonuniform[21] and therefore simply tracking the flow at a yie . .
single point is ambiguous. However by the same token, td—|o|wever, IttJ |sdalso s;:entfrom 'Il'able _IthgTs. 4 and ? that thet
talk about the properties of a pulse in the near field can b€0e ay can beé dependent on puise width. 10 properly accoun

equally ambiguous. What happens is that immediately afte}l°" this the temporlql variation of the s_tored energy density
thqe gréting tﬁe pulse breakspﬁp, the electric and mggneti%!nder pulsed conditions would be required. We believe there

fields vary strongly, there is an additional component of thewiII still be a strong correlation. Further investigations along

electric field and clearly there is no such thing as the direc:[hese lines are currently underway.

tion of propagation across the unit cell. It is only when we

work in the far field that we can properly speak of the reap- VI. CONCLUSION

pearance of the pulse. This does not mean however that there ) ) )

is neither rhyme nor reason for the buildup of the delay. We have investigated the delay a pulse suffers while pass-

Once we concentrate on average quantities over the unit cdlfd through a 2D metallic grating comprising subwavelength

the general trend becomes clear. Definitions of time delay i$lits at carrier frequencies corresponding to two kinds of high

the near-field different from ours are of course possible. Neviransmission resonances, commonly referred to as surface

ertheless useful features of our approach include a continutlasmon polariton and waveguide mode resonances. We have

ous measure from the near to the far field, and the quantitieghown for the SPP resonance the greater part of the pulse

involved, such as the total power across a surface or the totélelay occurs not only within the grating structure but contin-

stored energy, are those appearing in Poynting’s theorem. ues to develop beyond the grating up to a distance of twice
The correlation betweehV, the total stored energy, and the grating period. Conversely for the WGM resonance, the

delay has long been known for lossless netwdiks3]. For delay is essentially established inside the grating structure.

our situation we consider a region beyond the grating as d"e contrasting behavior has been linked to the total stored

lossless network. The time require@)(for a pulse of energy €nergy and the evanescent field amplitudes present in each

to enter and leave the region is the average stored efiéfgy case. Since the analysis has been based on field quantities the

tions within the general field of subwavelength diffracting

structures, such as photonic crystal structures.

T w
= (5)
ACKNOWLEDGMENT
For the stationary wave the total stored energy is The authorg Woulc_i like to thank Professor G. I_Darry for.
many useful discussions and encouragement. This work is
) supported within the Ultrafast Photonics Consorti(diPC)
W:f w(2)dz, (6) financed from the U.K. Engineering Research Council
0 (EPSRQ.
[1] C. Montgomery, R. Dicke, and E.M. Purceffrinciples of Mi- wave Theory Tech49, 192 (2001).
crowave Circuits(McGraw-Hill, New York, 1948. [5] M. Scalora, J.P. Dowling, A.S. Manka, C.M. Bowden, and J.W.
[2] P. Penfield, Jr., R. Spence, and S. DuinRetlegen’s Theorem Haus, Phys. Rev. A2, 726 (1995.
and Electrical Network$éM.I.T. Press, Cambridge, MA, 1970 [6] M. Scalora, R.J. Flynn, S.B. Reinhardt, R.L. Fork, M.J. Bloe-
[3] R. Collin, Foundations for Microwave Engineer2nd ed. mer, M.D. Tocci, C. Bowden, H.S. Ledbetter, J.M. Benedick-
(McGraw-Hill, New York, 1992. son, J.P. Dowling, and R.P. Leavitt, Phys. Rev5& R1078

[4] C. Ernst, V. Postoyalko, and N.G. Khan, IEEE Trans. Micro- (1996.

066604-6



PULSE DELAY AND PROPAGATION THROUGH . .. PHYSICAL REVIEW B8, 066604 (2003

[7] G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M.J. Bloe- [19] Q. Cao and P. Lalanne, Phys. Rev. L&&, 057403(2002.
mer, C.M. Bowden, J.W. Haus, and M. Bertolotti, Phys. Rev. E[20] S. Collin, F. Pardo, R. Teissier, and J.L. Pelouard, Phys. Rev. B

63, 036610(2001). 63, 033107(20012).

[8] J. Peatross, S.A. Glasgow, and M. Ware, Phys. Rev. Béft. [21] P.N. Stavrinou and L. Solymar, Opt. CommuR06, 217
2370(2000. (2002.

[9] S. Glasgow, M. Ware, and J. Peatross, Phys. R&4,B846610  [22] A, Barbara, P. Queerias, E. Bustarret, and T. Lopez-Rios,
(2002). Phys. Rev. B66, 161403(2002.

[10] T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, Na- 23] Handbook of Optical Constants of Solidsdited by E. Palik
ture (London 391, 667 (1998. (Academic, Orlando, 1985

[11] E. Popov, M. Neviee, S. Enoch, and R. Reinisch, Phys. Rev. B
62, 16100(2000.

[12] L. Salomon, F. Grillot, A. Zayats, and F. de Fornel, Phys. Rev.
Lett. 86, 1110(2001).

[13] L. Martin-Moreno, F.J. GarerVidal, J. Lezec, K.M. Pellerin,
T. Thio, J.B. Pendry, and T.W. Ebbesen, Phys. Rev. 188t. )
1114(2002). [27] W. Nakagawa, R-C. Tyan, P.-C. Sun, F. Yu, and Y. Fainman, J.

[14] R. Wannemacher, Opt. Commuto5, 107 (2001. Opt. Soc. Am. A8, 1072(2003).

[15] J. Porto, F.J. Gata+Vidal, and J.B. Pendry, Phys. Rev. Lett. [28] M. Moharam, E. Grann, D. Pommet, and T. Gaylord, J. Opt.

[24] F. Schreier, M. Schmitz, and O. Bryngdahl, Opt. L&8, 1337
(1998.

[25] A. Dogariu, T. Thio, L.J. Wang, T.W. Ebbesen, and H.J. Lezec,
Opt. Lett.26, 450 (2001).

[26] H. Ichikawa, J. Opt. Soc. Am. A6, 299 (1999.

83, 2845(1999. Soc. Am. A12, 1068(1995.
[16] W.-C. Tan, T. Preist, and J. Sambles, Phys. Re@2B11134  [29] L. Li, J. Opt. Soc. Am.13, 1870(1996.

(2000. [30] P. Lalanne and M. Jurek, J. Mod. O@gb6, 1357 (1998.
[17] Y. Takakura, Phys. Rev. Let&6, 5601(2001). [31] R. Bracewell,The Fourier Transform and Application@nd
[18] M.M.J. Treacy, Appl. Phys. LetZ5, 606 (1999. ed. (McGraw-Hill, New York, 1986.

066604-7



