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Pulse delay and propagation through subwavelength metallic slits
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The transmission properties of a 2D metallic grating are investigated at optical wavelengths for an incident
Gaussian pulse having pulse widths from 100 fs to 10 ps. The slits in the grating are subwavelength which can
nevertheless allow significant transmission in the narrow wavelength regions where the so-called surface
plasmon polariton~SPP! and waveguide mode resonances occur. The solution is obtained for each spectral
component of the pulse by using the rigorous coupled wave approach and then the temporally varying output
pulse is reconstructed by the standard method of taking an inverse Fourier transform. The delay of the pulse
and the output pulse widths are determined by taking the first and second order moments of the Poynting vector
with respect to time. It is shown that the time delay may be significant, as much as 256 fs for a pulse width of
200 fs for the SPP resonance but quite small~32 fs! for the waveguide mode resonance. The focus of the work
is on demonstrating how the pulse delay evolves as the pulse propagates in the half-space beyond the grating.
It is shown that the distance over which the time delay develops is much larger than the actual longitudinal
dimension of the grating structure and it is approximately the same distance over which the stored energy and
the vortices of the Poynting vector extend.
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I. INTRODUCTION

It has long been known that in a linear two-port network
single frequency input wave will give rise to an output wa
at the same frequency and, in general, the output wave
differ from the input wave in amplitude and phase. If t
input wave is pulsed then the same considerations lead to
conclusion that the output pulse will have a somewhat
ferent frequency spectrum and will appear with some de
If we know the properties of the two-port network, say, t
scattering coefficients and their frequency dependence,
can work out the time delay. So far this is all network theo
~see e.g.@1–3#!. If we wish to go further and determine th
scattering coefficients in a particular case then, often, we
forced to turn to electromagnetic theory. This is particula
so at optical frequencies, the subject of the present work.
aim is to determine, using the full apparatus of Maxwe
equations, the variation of the electric and magnetic fields
an input pulse incident upon the two-dimensional meta
grating shown in Fig. 1 with a view to find the pulse del
from field considerations@1–9#. Since the electric and mag
netic fields will be available at every point we shall be ab
to show how the actual time delay builds up as the pu
crosses the slit and propagates into the half-space bey
We shall then attempt to give an answer to the next relev
question that how large is the domain where the delay oc
and how it is correlated to some of the other variables c
culated like the time average Poynting vector and the sto
energy. Work along similar lines has been performed in
recent past where various field quantities have been stu
in relation to energy flow, group velocity and pulse propag
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tion for a variety of optical structures~see e.g.@5–9#!.
The motivation for investigating this type of grating stru

ture came from the recent experimental results of Ebbe
et al. @10# who showed that considerable resonant transm
sion may be obtained through a periodic array of subwa
length holes due to the good offices of surface plasmon
laritons ~SPP!. The assumption that surface plasmons
responsible for the high transmission was subseque
tested, and proved by several groups@11–14#. An earlier at-
tempt to explain the high transmission by introducing a tw
dimensional slit geometry was made by Portoet al. @15#. In
addition to what was described as an SPP driven reson
they were able to show that for an incidentp-polarized wave
high transmission may also occur in another wavelength
gion ~slit size being still much smaller than the waveleng!
when the physical mechanism is resonant coupling at a g
ing thickness close to half a wavelength. Various aspect
the high transmission resonances found with these struct
have been investigated~see e.g.@16–22#!. In terms of field
quantities, the differences between the two resonances w
examined in Ref.@21# by relying on the time-average Poyn
ting vector. In the present paper we intend to use sim
techniques in the pulsed regime.

FIG. 1. A schematic representation of the metallic grating u
in the present work; the structure is considered infinite in they
direction. Dispersive, complex permittivity values were used cor
sponding to gold taken from Ref.@23#. The slit width is fixed ata
50.5 mm and the grating period wasL53.5 mm.
©2003 The American Physical Society04-1
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Time delay under resonant conditions in diffractive stru
tures has been considered by Schreieret al. @24# for a dielec-
tric structure by analyzing the output wave far away from
grating. They concluded that under resonance condition
wave packet stimulates modes that are supported by
structure. Energy is coupled into these modes and cou
out with a temporal delay. Work examining the pulse de
through a metallic grating has recently been experiment
investigated by Dogariuet al. @25#. They measured time de
lays of about 7 fs when a pulse propagated through a t
dimensional array of subwavelength holes at an SPP r
nance, and deduced the theoretical value from the sim
model of a damped Lorentz oscillator. For the present wo
pulse propagation and delay are examined at the high tr
mission resonances of a metallic grating comprising s
wavelength slits. In Sec. II we discuss how grating diffra
tion for an incident pulse can be found from the solution
the stationary case and show how the pulse delay and
change in the pulse width can be obtained from first a
second moments of the Poynting vector. In Sec. III we sh
results for the SPP resonance, in particular how the de
builds up and how it depends on the pulse width. Sec.
shows the relatively straightforward case of the wavegu
mode resonance~WGM!. A short discussion analyzes th
main results in Sec. V and finally conclusions are drawn
Sec. VI.

II. CALCULATION SCHEME

A. Background theory

In a previous publication@21# we investigated the stead
state properties of the grating shown in Fig. 1, concentra
on high transmission zero-order resonances arising for
incident p-polarized plane wave. We shall now solve t
same problem for the same grating parameters for an in
pulse taken in the form of a carrier modulated by a Gauss
envelope. The normally incident electric field is taken in t
form

Ex5expS 22 ln 2
t2

t2D expi ~vt2kz!, ~1!

wheret is time,z is the coordinate in the direction of propa
gation~see Fig. 1!, v is the carrier frequency,t is a measure
of the pulse duration~the FWHM intensity! andk is the wave
number. Equation~1! provides the time variation for a singl
pulse which reaches the grating att50. In practice we can-
not avoid turning this problem into that of a periodic set
pulses incident at a repetition frequency ofdv wheredv is
the frequency interval at which the samples of the wavefo
are taken. Provided that the resulting temporal period
tween the pulses,T52p/dv, is much larger than the pulse
width, and the lifetime of any excited modes in the gratin
the solution obtained is essentially that of a single pulse.
mathematical technique is to take the discrete Fourier tra
form of the incident pulse and then each spectral compon
~spaceddv apart! can be regarded as an incident plane wa
Hence the problem reduces to that of a set of plane wave
slightly different frequencies and complex amplitudes in
06660
-

e
a

he
ed
y
ly

o-
o-
le
,
s-
-

-
r
he
d
w
y

V
e

n

g
n

ut
n

f

e-

,
e
s-
nt
.
of
-

dent upon the grating@26,27#. In the present work, the tem
poral period between the pulses is selected to be betw
20–3003 the pulse widtht. The resulting spectral band
width of a pulse is truncated to retain envelope magnitu
which are>10214 and typically involves several hundre
components.

In our earlier work we obtained field distributions ever
where in space for a single incident plane wave@21#. Thus to
solve the problem for pulsed incidence we only need to
perimpose the solutions obtained for each spectral com
nent. The temporal variation of the fields may then be o
tained by taking an inverse Fourier transform of the f
solution at each point in space. If all one wants is to de
mine the time delay between the input pulse and the ou
pulse then it is sufficient to investigate the time variation
the zero order component of the field, i.e., to disregard all
evanescent waves generated. Our aim is however to see
the time delay builds up in the immediate vicinity of th
grating and, in particular, to see how large is the spatial
main which has an influence on delay. The answers to th
questions lie in the properties of the evanescent waves.

B. Calculation details

The parameters of the grating~Fig. 1! are chosen to be the
same as those previously examined@15,21#. The metal is
taken to be gold with a dispersive complex permittivity fitte
to the data provided in Ref.@23#. The grating period isL
53.5 mm and the width of the slit is kept fixed ata
50.5 mm. In the original work by Portoet al. @15# the spec-
tral response for different slit widths and grating thicknes
were examined and the resulting high transmission re
nances were broadly classed as arising from either SPP
or WGM @15#. Based on this work, and following on from
our previous investigation, two grating thicknesses are c
sen to specifically examine the SPP (d50.6 mm) and WGM
resonance (d53 mm). The resonant wavelengths arel
53.586 and 7.438mm for the SPP-like and waveguide mod
~WGM! resonances, respectively. Calculation of the elec
and magnetic fields follows closely that of Ref.@21#. The
mathematical technique used is based on rigorous cou
wave-analysis~RCWA! @28# and incorporates recent im
provements to the algorithm@29,30#. We use here the sam
technique for each of the spectral components and from t
as outlined in the previous section, we can find all the fi
quantities as functions ofx, z, andt.

The fields in the vicinity of the grating are given by th
zero-order propagating wave and a very large number of e
nescent waves~typically 100! for each of the spectral com
ponents. The number of spectral components retained va
from 100–1000 depending on the temporal width of t
pulse, increasing as the pulse width decreased. From
point of view the resulting field picture is difficult to inter
pret. We argued in Ref.@21# that a more useful physica
picture can be obtained if instead of the electric and magn
fields ~elliptically polarized in the general case hence can
be presented as single vectors at a point in space! we rely on
the time-averaged Poynting vector. In the present case
still talk about time-averaged Poynting vector but now t
4-2
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PULSE DELAY AND PROPAGATION THROUGH . . . PHYSICAL REVIEW E68, 066604 ~2003!
time average means averaging over a period of the ca
frequency, i.e., we still use the complex representat
S(x,z,t)51/2 Re@E(x,z,t)3H* (x,z,t)#. The time variation
due to the Gaussian envelope of the pulse remains. The
tial variation of the Poynting vector will appear in havin
both x and z components. The electromagnetic power m
move both sideways and forward. However when our m
interest is in the time delay we do not need to go into
details of lateral movement and present the passage o
pulse solely in terms of the transverse average of thez com-
ponent of the Poynting vector,

Sz~z,t !5
1

LE
2L/2

1L/2

Sz~x,z,t !dx. ~2!

The expected arrival time and rms width of the pulse a
given value ofz can then be obtained from the first an
second moments,^t& and ^t2& as follows@8,31#:

^t~z!&5E
2t

1t

tŜz~z,t !dt, ~3!

^t2~z!&5E
2t

1t

t2Ŝz~z,t !dt, ~4!

where a normalizedSz(z,t) is assumed. Both the above me
sures may then be used to characterize a rms width of
pulse given byst5A^t2&2^t&2. The incident pulse width as
a rms measure is given bys05At2/8 ln 2.

III. AT THE SPP RESONANCE

For plane waves incident at a single frequency the tra
mission as a function of wavelength is shown in Fig. 2
dotted lines. The spectrum of a Gaussian pulse, with ca
wavelength equal to the resonant wavelength, is shown in
same figure for pulse widths of 100, 200 and 400 fs. T
pulse transmission will of course depend on the width of

FIG. 2. The spectral representation of some Gaussian pu
with carrier wavelength equal to the SPP resonant wavelength
perimposed with the SPP transmission spectra~dotted line!.
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pulse. If the pulse is long enough the transmission will be
same as for the continuous case. As the pulse shortens
transmission declines for the spectral components away f
the resonance. This is shown in Table I. For pulse widths>2
ps the transmission is close to the steady state~infinite! value
of 60% but the transmitted power declines to 15% for a 1
fs pulse.

To begin the temporal study, we first look at a fixedz
position beyond the grating and record the time depend
power flow, averaged over a grating period@Eq. ~2!#. A dis-
tance of 10mm is chosen, which from our earlier work@21#
is far enough away so both the energy density and stre
lines at the SPP resonance describe basic plane wave p
gation. The results for a selection of incident pulse wid
are shown in Fig. 3. The overall shape of the transmit
pulses is reasonably maintained with some noticeable as
metry found for the shorter pulses. It is also noticeable fr
the times when the peak power is reached that some d
has occurred, given that free-space propagation over 10mm
would amount to some 33 fs. In the case of the 100 fs pu
we have included a scaled trace of an incident pulse wh
has traveled the same distance in free space. Compared
the trace which has propagated through the grating, a d
can be clearly seen.~In the figure the timet50 is defined as
when the peak of the incident pulse reaches the start of
grating atz50 mm.!

To get a better indication of the transit time in the pre
ence of the grating, the expected time for each trace is fo
using Eq.~3! and a delay is defined with respect to a pu
traveling the same distance through vacuum,tvac2^t&. The
magnitudeof delay for each pulse width considered in di
played Fig. 4 and Table I. The delay depends on dura
since, for much the same reason as the duration-depen
transmitted power, in a shorter pulse only part of its spectr
is affected by the resonance. It follows that the delay is s
to increase as the incident pulse duration increases. It is n
worthy that for the shorter pulses the delay can be com

s,
u-

TABLE I. Incident pulse widths at the SPP resonant frequen
and the corresponding total diffracted transmission efficienc
along with delay and rms values measured at a distancz
510 mm.

Pulse width Transmission Values atz510 mm
t ~ps! s0 ~ps! ~%! delay ~ps! st ~ps!

0.1 0.043 15 0.212 0.225
0.2 0.085 23 0.256 0.244
0.4 0.170 35 0.303 0.293
0.6 0.254 42 0.333 0.354
0.8 0.340 47 0.352 0.423
1 0.425 50 0.365 0.493
2 0.849 56 0.402 0.874
5 2.123 59 0.415 2.144
10 4.246 59 0.418 4.257

` 60 a 0.413b

aObtained from the spectral response atlSPP53.586mm.
bCalculated from the spectral phase response using2]f/]v.
4-3



de
ct

ic
ay
he
fo
pl
-
f
t

es

loci

gion

e
tual

-

ing,
igh

ther
ted
ter
h
ig.
y
x-

ner
n-

ilar
lves.
of

h

en
nd
to
ll

the

of
s a

ane
een
nds

s-
ode.
abry-

.

m

e

t

s-

a

P. N. STAVRINOU AND L. SOLYMAR PHYSICAL REVIEW E68, 066604 ~2003!
rable to the pulse width, e.g., a 200 fs incident pulse is
layed by some 250 fs. For longer pulses the delay is expe
to approach a limiting value dependent on2]f/]v @24#,
wheref is the zero order transmitted phase response, wh
is straightforward to obtain numerically. The resulting del
is found to be 413 fs which is in good agreement with t
limiting value suggested in Fig. 4. An approximate value
the delay can also be found from the model of a sim
damped Lorentz oscillator@25# and deduced from the reso
nance curve. That calculation yields a value of about 400

We can of course repeat the above analysis and vary
measurement position along thez axis which will give a
clearer physical picture by showing how the delay evolv
For eachz position, the temporal trace@Eq. ~2!# is recorded

FIG. 3. Time dependent power flow for a selection of puls
recorded at a distancez510 mm (9.4mm from the grating!. At t
50 the peak of the incident pulse reaches the grating az
50 mm. Also shown in the upper plot~dashed line! is a 100 fs
incident pulse~scaled by30.1) which has traveled the same di
tance in free space.

FIG. 4. The absolute values of delay,utvac2^t&u, for the inci-
dent pulse widths in Table I centered at the SPP resonance
calculated at distancez510 mm. ~The solid line is used to guide
the eye.!
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and taken together form a map ofSz(z,t). Figure 5~a! illus-
trates how a delay would be represented by tracking the
of the peak position of the pulse~or generallŷ t&). Numeri-
cal results, displayingSz(z,t) and ^t& for a 400 fs pulse
centered at the SPP resonance, spanning the output re
from the grating are shown in Fig. 5~b!. Tracking the dis-
placement between the loci^t& and the vacuum peak, th
build up of the delay is seen to continue outside the ac
grating structure, up toz'2L away. If throughout this re-
gion the gradient of thêt& loci is considered then the instan
taneous velocity of the pulse is initially around ('c/20) im-
mediately after the grating before rising to'c for z
>10 mm. At the larger distances, i.e.,z>2L, the delay var-
ies very little, as shown in Fig. 5~c!.

The map in Fig. 5~b! also highlights how the width of the
pulse varies as it leaves the grating. Close to the grat
where the delay builds up, the local peak intensity is h
and the temporal width~i.e., for a fixedz position! appears
contracted compared to similar measurements taken fur
away. Some temporal variation of the pulse may be expec
given the inevitable spectral filtering, more so for the shor
pulses. The rms width of the transmitted pulse at eacz
position is found and displayed along with the delay in F
5~c!. The spatial evolution of the width shows all activit
occurs withinz<2L from the grating, the same spatial e
tent over which the delay is established. Forz@2L both
measures show little change.

The representation of delay and rms width in this man
@Fig. 5~c!# has highlighted the significance of the enviro
ment close to the grating~i.e., z<2L). Indeed when other
pulse durations are considered and displayed in a sim
manner, some common aspects begin to reveal themse
In Fig. 6 we display the delay magnitude as a function
distance, whereas in Fig. 5~c!, results are concerned wit
propagation immediately after the grating~i.e., z
>0.6 mm). The delay buildup for each pulse is clearly se
to continue well after the physical extent of the grating a
up to z'2L in the propagating direction before settling
fixed values abovez.2L. The key observation is that for a
pulse widths considered~not only those shown in Fig. 6! the
distance over which the delay develops appears to be
same, i.e., the spatial extent of delay evolution isindepen-
dentof pulse duration. We also plot in Fig. 6 the variation
the stored energy, averaged over the grating period, a
function of distance for the stationary case, i.e., when a pl
wave is incident at the resonant frequency. It may be s
that the region within which the energy is stored also exte
to aboutz<2L.

IV. AT THE WGM RESONANCE

To complete the study, we briefly turn to the high tran
mission resonance usually referred to as a waveguide m
The appearance of these resonances can be traced to F
Pérot behavior within the slits@17#. The grating thickness in
Fig. 1 is taken asd53 mm and the high transmission
(.80%) resonance occurs at 7.438mm and as noted in Ref
@17# is longer in wavelength than'2d. In relation to the
grating period, the zero-order WGM resonance is far fro

s

nd
4-4
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FIG. 5. Illustration of delay and numerical results for a 400 fs pulse centered at the SPP resonance.~a! A schematic showing how a
transmitted delay would be represented by considering the displacement of^t& from vacuum propagation.~b! The numerical map ofSz(z,t)
for a 400 fs pulse spanning the region immediately after the grating, the lighter regions indicate high intensity. The loci of^t& is superim-
posed on the map along with the equivalent measure for vacuum propagation. Tracking the displacement between these two
illustrates the development of the delay beyond the grating~i.e., z.0.6 mm). ~c! For a 400 fs pulse, the rms width~solid line! and delay
~dash-dotted line! calculated as a function of distance beyond the grating. For both cases all activity is finished byz'2L.
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the grating cutoff and consequently the strength of evan
cent field components is greatly reduced, particularly wh
compared with the evanescent presence for the SPP
resonance.

Figure 7 shows the delay magnitudes for two incide
pulses, 200 fs and 2 ps intensity~FWHM!, with the carrier
frequency set to the resonant wavelength. In both cases
development of the delayoutside the grating is minimal,
within 1 mm from the grating the delay is established. T
most significant contribution to the delay is due to the pro
gation within the slit. A peak value of 32 fs is found from
using2]f/]v from the frequency response.

V. DISCUSSION

Our calculations have shown that two resonances inve
gated exhibit quite different behavior not only under t

FIG. 6. Pulse delay for the SPP resonance as a function of
tance beyond the grating along with the variation in stored ene
density at the SPP resonance.~Solid lines! Absolute values of delay
for several pulse widths.~Dash-dotted line! The steady state store
energy density evaluated at the SPP resonance and averaged
grating period~alongx).
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steady state but also under pulsed conditions. In the first c
~referred to as the SPP resonance! the evanescent fields hav
high amplitudes whereas the evanescent amplitudes are
for the WGM resonance. We wish to emphasize that this
the major difference between the two resonances and
other properties follow from that.

Considering the SPP resonance, our earlier work
shown that due to the presence of the evanescent wave
streamlines of the Poynting vector form vortices which e
tend over a large distance away from the grating~about 2L
from Fig. 2 in Ref.@21#!. When the evanescent amplitude
are high the stored energy density is high as well and exte
to similar distance beyond the grating~cf. Fig. 4 in Ref.
@21#!. In the present work we investigated a range of incid
pulse widths and examined the development of a pulseafter
leaving the grating. As shown in Fig. 6 the pulse delay co

is-
y

er a

FIG. 7. Pulse delay for the WGM resonance as a function
distance beyond the grating along with the variation in stored
ergy density at the WGM resonance.~Solid lines! Absolute values
of delay for several pulse widths.~Dash-dotted line! The steady
state stored energy density averaged over a grating period~along
x).
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P. N. STAVRINOU AND L. SOLYMAR PHYSICAL REVIEW E68, 066604 ~2003!
tinued to build up over the same region~i.e., overz<2L).
Before we continue, it is perhaps worth making som

comments about the measures we use for the calculat
The results presented in Table I and Figs. 3 and 4 are
concerned with the far field regime. The key measures u
throughout were defined in Eqs.~2! and ~3! and involve a
spatially average Poynting vector and its temporal expec
value. The use of expectation values is well established
the context of time delay@8,9#. Our use of the expected valu
of a spatially averaged quantity in the far field is really mo
for convenience than necessity. Simply tracking the temp
power flow at a single point would provide the same resu
Spatial averaging becomes more useful when we turn to
near field where the field distributions and power flow
nonuniform@21# and therefore simply tracking the flow at
single point is ambiguous. However by the same token
talk about the properties of a pulse in the near field can
equally ambiguous. What happens is that immediately a
the grating the pulse breaks up, the electric and magn
fields vary strongly, there is an additional component of
electric field and clearly there is no such thing as the dir
tion of propagation across the unit cell. It is only when w
work in the far field that we can properly speak of the rea
pearance of the pulse. This does not mean however that t
is neither rhyme nor reason for the buildup of the del
Once we concentrate on average quantities over the unit
the general trend becomes clear. Definitions of time dela
the near-field different from ours are of course possible. N
ertheless useful features of our approach include a cont
ous measure from the near to the far field, and the quant
involved, such as the total power across a surface or the
stored energy, are those appearing in Poynting’s theorem

The correlation betweenW, the total stored energy, an
delay has long been known for lossless networks@1–3#. For
our situation we consider a region beyond the grating a
lossless network. The time required (T ) for a pulse of energy
to enter and leave the region is the average stored energy~W!
per unit incident power (P) and may be written as

T5
W
P . ~5!

For the stationary wave the total stored energy is

W5E
0

z

w~z!dz, ~6!
o-
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wherew(z) is the average~over x) stored energy per uni
volume. Hence the time delay is related to the derivative
the total stored energy density and, indeed, this is borne
by Fig. 6. Wherew is high the rate of change of delay is hig
as well. Whenw declines to zero the delay no longe
changes. A similar line of reasoning may be used for
WGM resonance. As already noted, the evanescent field
plitudes in this case are low and consequently the sto
energy outside the grating structure is low. Any further d
velopment of the delay, above that which occurs within t
structure, is expected to be minimal and this is indeed w
Fig. 7 suggests.

Our picture so far has used the steady state stored en
evaluated at the SPP resonant frequency, which appea
yield good correlation with the spatial variation of dela
However, it is also seen from Table I, Figs. 4 and 6 that
delay can be dependent on pulse width. To properly acco
for this the temporal variation of the stored energy dens
under pulsed conditions would be required. We believe th
will still be a strong correlation. Further investigations alo
these lines are currently underway.

VI. CONCLUSION

We have investigated the delay a pulse suffers while pa
ing through a 2D metallic grating comprising subwaveleng
slits at carrier frequencies corresponding to two kinds of h
transmission resonances, commonly referred to as sur
plasmon polariton and waveguide mode resonances. We
shown for the SPP resonance the greater part of the p
delay occurs not only within the grating structure but cont
ues to develop beyond the grating up to a distance of tw
the grating period. Conversely for the WGM resonance,
delay is essentially established inside the grating struct
The contrasting behavior has been linked to the total sto
energy and the evanescent field amplitudes present in
case. Since the analysis has been based on field quantitie
conclusions reached are very likely to have wider implic
tions within the general field of subwavelength diffractin
structures, such as photonic crystal structures.
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